
The Computation of Previously Inaccessible
Digits of π2 and Catalan’s Constant

David H. Bailey∗ Jonathan M. Borwein† Andrew Mattingly‡

Glenn Wightwick§

April 19, 2011

1 Introduction

The poem “Pi” by 1996 Nobel Laureate Wislawa Szymborska starts:

The admirable number pi:
three point one four one.
All the following digits are also initial,
five nine two because it never ends.
It can’t be comprehended six five three five at a glance,
eight nine by calculation,
seven nine or imagination,
not even three two three eight by wit, that is, by comparison
four six to anything else
two six four three in the world.

The longest snake on earth calls it quits at about forty feet.
Likewise, snakes of myth and legend, though they may hold out a bit longer.
The pageant of digits comprising the number pi
doesn’t stop at the page’s edge.

We have recently concluded a very large mathematical calculation, uncovering objects that
until recently were widely considered to be forever inaccessible to computation. These calcu-
lations required both human ingenuity and the extraordinary power of modern highly parallel
computer technology.

Our computations stem from the “BBP” formula for π, which was discovered in 1997 using
a computer program implementing the “PSLQ” integer relation algorithm. This formula has
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the remarkable property that it permits one to directly calculate binary digits of π, beginning
at an arbitrary position d, without needing to calculate any of the first d−1 digits. Since 1997,
numerous other BBP-type formulas have been discovered for various mathematical constants,
including formulas for π2 (both in binary and ternary bases), and for Catalan’s constant.

In this article we describe the computation of base-64 digits of π2, base-729 digits of π2,
and base-4096 digits of Catalan’s constant, in each case beginning at the ten trillionth place,
computations that involved a total of approximately 1.549 × 1019 floating-point operations.
We also discuss connections between BBP-type formulas and the age-old unsolved questions of
whether and why constants such as π, π2, log 2 and Catalan’s constant have “random” digits.

2 A brief history of the computation of pi

Since the dawn of civilization, mathematicians have been intrigued by the digits of π [11]. In
the third century BCE, Archimedes employed a brilliant scheme of inscribed and circumscribed
3 · 2n-gons to compute π to two decimal digit accuracy [8]. It was the first true algorithm for
π, in that it permitted one to produce an arbitrarily accurate value for π. However, this and
other numerical calculations of antiquity were severely hobbled by their reliance on primitive
arithmetic systems.

A major breakthrough in this regard, which some regard as among the greatest scientific
developments of all time, was the discovery of full positional decimal arithmetic with zero,
by an unknown mathematician in fifth century India. Several hundred years later, in 999
CE, scientist-Pope Sylvester II attempted to introduce decimal arithmetic in Europe. Yet,
little headway was made until the publication of Fibonacci’s Liber Abaci in 1202, and several
hundred more years would pass before the system finally gained universal, if belated, adoption
in the West. The time of Sylvester’s reign was a very turbulent one, and he died in 1002,
shortly after the death of his protector Emperor Otto III. It is interesting to speculate how
history would have changed had he lived longer. A page from his mathematical treatise De
Geometria is shown in Figure 1.

2.1 Pi after calculus

Armed with decimal arithmetic, and spurred by the newly discovered methods of calculus,
mathematicians computed π with aplomb. Isaac Newton himself devised an arcsine-like scheme
to compute digits of π and recorded 15 digits, although he sheepishly acknowledged, “I am
ashamed to tell you to how many figures I carried these computations, having no other business
at the time.” Newton wrote these words during the plague year 1666, when, ensconced in a
country estate, he devised the fundamentals of calculus and the laws of motion and gravitation.

All records until 1980 relied on so called Machin-type formulas [10], which write π as a
linear combination of arctangent values. The most famous of these is Machin’s formula:

π

4
= 4 arctan

(
1

5

)
− arctan

(
1

239

)
. (1)

In 1844 the Viennese computer and kopfrechner Johan Zacharias Dase (1824 -1861) calcu-
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Figure 1: Excerpt from de Geometria by Pope Sylvester II (reigned 999-1002 CE)

lated π to 200 places upon learning Euler’s Machin-type formula

π

4
= tan−1

(
1

2

)
+ tan−1

(
1

5

)
+ tan−1

(
1

8

)
(2)

from Strassnitsky. He did this feat in his head, correctly, over a two month period, without
any aids.

The culmination of these feats was a computation of π using (1) to 527 digits in 1853 by
William Shanks, later (erroneously) extended to 707 digits — see Table 1. In the preface to
the publication of this computation, Shanks wrote that his work “would add little or nothing
to his fame as a Mathematician, though it might as a Computer” (until 1950 a “computer” was
a person, and a “calculator” was a machine).

One motivation for computing these digits was to see whether the digits of π repeat, thus
disclosing the fact that π is a ratio of two integers. In 1766, Lambert proved that π is irrational,
by means of a continued fraction argument, thus establishing that the digits of π do not repeat
in any number base. In 1882, Lindemann established that π is transcendental, thus establishing
that the digits of π2 or any integer polynomial of π cannot repeat.

2.2 Pi in the computer age

At the dawn of the computer age, John von Neumann suggested computing digits of π and e
for statistical analysis, and in 1949 π was computed to 2037 digits, at the instigation of John
von Neumann, on the Electronic Numerical Integrator And Calculator (ENIAC) — see Figure
2. In 1965 mathematicians realized that the newly-discovered fast Fourier transform could be
used to dramatically accelerate high-precision multiplication.

In 1976, Eugene Salamin and Richard Brent independently discovered a new algorithm for
π based on elliptic integrals and the Gauss arithmetic-geometric mean iteration [10]. This
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Name Year Digits
Babylonians 2000? BCE 1
Egyptians 2000? BCE 1
Hebrews (1 Kings 7:23) 550? BCE 1
Archimedes 250? BCE 3
Ptolemy 150 3
Liu Hui 263 5
Tsu Ch’ung Chi 480? 7
Madhava 1400? 13
Al-Kashi 1429 14
Romanus 1593 15
Van Ceulen 1615 35
Sharp (and Halley) 1699 71
Machin 1706 100
Strassnitzky and Dase 1844 200
Rutherford 1853 440
W. Shanks 1853 (607) 527
W. Shanks 1874 (707) 527
Ferguson (Calculator) 1947 808

Table 1: Pre-computer-age π computations

Figure 2: The ENIAC in the Smithsonian Museum

Name Year Correct Digits
Reitwiesner et al. (ENIAC) 1949 2,037
Genuys (IBM) 1958 10,000
D. Shanks and Wrench (IBM) 1961 100,265
Guilloud and Bouyer (IBM) 1973 1,001,250
Miyoshi and Kanada 1981 2,000,036

Table 2: Early computer-era π calculations
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Figure 3: Searches for “Pi” on Google Trends, showing spikes near the annual Pi Day (3.14).

converges much more rapidly than the classical infinite series used since the time of Newton—
each iteration approximately doubles the number of correct digits in the result. When these and
other algorithmic advances were combined with the exponentially increasing power of computer
hardware, π was computed to over one million digits in 1973, to over one billion digits in 1989,
and to over one trillion digits in 2002 — see Tables 2 and 3.

As recently as 1963, Daniel Shanks, who himself calculated π to over 100,000 digits, told
Philip Davis that computing one billion digits would be “forever impossible.” Yet this feat was
achieved less than 30 years later in 1989 by Yasumasa Kanada of Japan. Also, in 1989, famous
British physicist Roger Penrose, in the first edition of his best-selling book The Emperor’s New
Mind, declared that humankind likely will never know if a string of ten consecutive sevens
occurs in the decimal expansion of π. This string was found just eight years later, in 1997, also
by Kanada, beginning at position 22,869,046,249. After being advised by one of the present
authors, Penrose revised his second edition to specify twenty consecutive sevens.

Kanada also found the string 0123456789, which plays a famous role in the intuitionist
philosophy of mathematics, commencing at the 17,387,594,880-th position after the decimal
point. This was despite Brouwer and Heyting’s certainty that when and if it occurred was
unknowable. Even astronomer Carl Sagan, whose lead character in his 1985 novel Contact
(played by Jodi Foster in the movie version) sought confirmation in base-11 digits of π, expressed
surprise to learn, shortly after the book’s publication, that π had already been computed to
many millions of digits.

So much for human certainty of continued human ignorance. Jonathan and Peter Borwein,
when asked about π in 1986 by the Los Angeles Times, opted to be correct in their lifetimes
and replied that 10100 digits was out of sight. They have not yet found it necessary to retract.

In spite of these advances and many additional mathematical discoveries [8], an air of
mystery still surrounds π. As a single example, the question of whether, or why, the digits of
π appear statistically random remains completely unanswered, a glaring hole in mathematical
knowledge that is laid bare whenever a child sees the digits of π printed on a banner in her
classroom and asks “Why is there no pattern?”

The one known regular pattern regarding π is in the annual search for information around Pi
Day (March 14, i.e., 3/14), as Figure 3, taken from http://www.google.com/trends?q=Pi+,
makes clear.
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Name Year Correct Digits
Miyoshi and Kanada 1981 2,000,036
Kanada-Yoshino-Tamura 1982 16,777,206
Gosper 1985 17,526,200
Bailey Jan. 1986 29,360,111
Kanada and Tamura Sep. 1986 33,554,414
Kanada and Tamura Oct. 1986 67,108,839
Kanada et. al Jan. 1987 134,217,700
Kanada and Tamura Jan. 1988 201,326,551
Chudnovskys May 1989 480,000,000
Kanada and Tamura Jul. 1989 536,870,898
Kanada and Tamura Nov. 1989 1,073,741,799
Chudnovskys Aug. 1991 2,260,000,000
Chudnovskys May 1994 4,044,000,000
Kanada and Takahashi Oct. 1995 6,442,450,938
Kanada and Takahashi Jul. 1997 51,539,600,000
Kanada and Takahashi Sep. 1999 206,158,430,000
Kanada-Ushiro-Kuroda Dec. 2002 1,241,100,000,000
Takahashi Jan. 2009 1,649,000,000,000
Takahashi Apr. 2009 2,576,980,377,524
Bellard Dec. 2009 2,699,999,990,000
Kondo and Yee Aug. 2010 5,000,000,000,000

Table 3: Modern computer-era π calculations

3 The BBP formula for pi

A 1997 paper [3], [9, Ch. 3] by one of the present authors (Bailey), Peter Borwein (brother of
Jonathan Borwein) and Simon Plouffe presented the following previously unknown formula for
π, now known as the “BBP” formula for π:

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (3)

This formula has the remarkable property that it permits one to directly calculate binary or
hexadecimal digits of π beginning at an arbitrary starting position, without needing to calculate
any of the preceding digits. The resulting simple algorithm requires only minimal memory, does
not require multiple-precision arithmetic, and is very well suited to highly parallel computation.
The cost of this scheme increases only slightly faster than the index of the starting position.

The proof of this formula is surprisingly elementary. First note that for any k < 8,∫ 1/
√

2

0

xk−1

1− x8
dx =

∫ 1/
√

2

0

∞∑
i=0

xk−1+8i dx =
1

2k/2

∞∑
i=0

1

16i(8i+ k)
. (4)

Thus one can write
∞∑
i=0

1

16i

(
4

8i+ 1
− 2

8i+ 4
− 1

8i+ 5
− 1

8i+ 6

)
=

∫ 1/
√

2

0

4
√

2− 8x3 − 4
√

2x4 − 8x5

1− x8
dx, (5)
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which on substituting y :=
√

2x becomes∫ 1

0

16 y − 16

y4 − 2 y3 + 4 y − 4
dy =

∫ 1

0

4y

y2 − 2
dy −

∫ 1

0

4y − 8

y2 − 2y + 2
dy = π, (6)

reflecting a partial fraction decomposition of the integral on the left-hand side. In 1997 neither
Maple nor Mathematica could evaluate (3). Today both systems can.

3.1 Binary digits of log 2

The BBP formula (3) was not discovered by a conventional analytic derivation. Instead, it was
discovered via a computer-based search using the PSLQ integer relation detection algorithm
(see Section 3.2) of mathematician-sculptor Helaman Ferguson [4], in a process that some have
described as an exercise in “reverse mathematical engineering.” The motivation for this search
was the earlier observation by the authors of [3] that log 2 also has this arbitrary position digit
calculating property. This can be seen by analyzing the classical formula

log 2 =
∞∑
k=1

1

k2k
, (7)

which has been known at least since the time of Euler, and which is closely related to the
functional equation for the dilogarithm.

Let r mod 1 denote the fractional part of a nonnegative real number r, and let d be a
nonnegative integer. Then the binary fraction of log 2 after the “decimal” point has been
shifted to the right d places can be written as

(2d log 2) mod 1 =

(
d∑

k=1

2d−k

k
mod 1 +

∞∑
k=d+1

2d−k

k
mod 1

)
mod 1

=

(
d∑

k=1

2d−k mod k

k
mod 1 +

∞∑
k=d+1

2d−k

k
mod 1

)
mod 1, (8)

where “mod k” has been inserted in the numerator of first term since we are only interested in
the fractional part of the result after division.

The operation 2d−k mod k can be performed very rapidly by means of the binary algorithm
for exponentiation. This scheme is the observation that an exponentiation operation such as 317

can be performed in only five multiplications, instead of 16, by writing it as 317 = ((((32)2)2)2)·3.
Additional savings can be realized by reducing all of the intermediate multiplication results
modulo k at each step. This algorithm, together with the division and summation opera-
tions indicated in the first term, can be performed in ordinary double-precision floating-point
arithmetic, or, for very large calculations by using quad- or oct-precision arithmetic.

Expressing the final fractional value in binary notation yields a string of digits corresponding
to the binary digits of log 2 beginning immediately after the first d digits of log 2. Computed
results can be easily checked by performing this operation for two slightly different positions,
say d− 1 and d, then checking to see that resulting digit strings properly overlap.
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3.2 Hunt for the pi formula

In the wake of finding the above scheme for the binary digits of log 2, the authors of [3] im-
mediately wondered if there was a similar formula for π (none was known at the time). Their
approach was to collect a list of mathematical constants (αi) for which formulas similar in struc-
ture to the formula for log 2 were known in the literature, and then to determine, by means of
a PSLQ integer relation computation, if a nontrivial linear relation exists of the form

a0π + a1α1 + a2α2 + · · ·+ anαn = 0, (9)

where ai are integers (because such a relation could then be solved for π to yield the desired
formula). After several months of false starts, the following relation was discovered:

π = 4 · 2F1

(
1, 1

4
5
4

∣∣∣∣−1

4

)
+ 2 arctan

(
1

2

)
− log 5, (10)

where the first term is a Gauss hypergeometric function evaluation. After writing this formula
explicitly in terms of summations, the BBP formula for π was uncovered:

π =
∞∑
k=0

1

16k

(
4

8k + 1
− 2

8k + 4
− 1

8k + 5
− 1

8k + 6

)
. (11)

3.3 The BBP formula in action

Variants of the BBP formula have been used in numerous computations of high-index digits
of π. In 1998 Colin Percival, then a 17-year-old undergraduate at Simon Fraser University in
Canada, computed binary digits beginning at position one quadrillion (1015). At the time, this
was one of the largest, if not the largest, distributed computations ever done. More recently, in
July 2010, Tsz-Wo Sze of Yahoo! Cloud Computing, in roughly 500 CPU-years of computing
on Apache Hadoop clusters, found that the base-16 digits of π beginning at position 5 × 1014

(corresponding to binary position two quadrillion) are:
0 E6C1294A ED40403F 56D2D764 026265BC A98511D0 FCFFAA10 F4D28B1B B5392B8.
The BBP formulas have also been used to confirm other computations of π. For example,

in August 2010, Shigeru Kondo (a hardware engineer) and Alexander Yee (an undergraduate
software engineer) computed five trillion decimal digits of π on a home-built $18,000 machine.
They found that the last 30 digits leading up to position five trillion are

7497120374 4023826421 9484283852.
Kondo and Yee (see photos in Figure 4) used the following Chudnovsky-Ramanujan series:

1

π
= 12

∞∑
k=0

(−1)k (6k)!(13591409 + 545140134k)

(3k)! (k!)3 6403203k+3/2
, (12)

They did not merely evaluate this formula as written, but instead employed a clever quasi-
symbolic scheme that mostly avoids the need for full-precision arithmetic.

The existence of such a rational series relies on the fact that Q(
√
−163) has unique factor-

ization. The sum (12) was prefigured by Ramanujan’s series in 1914:

1

π
=

2
√

2

9801

∞∑
k=0

(4k)! (1103 + 26390k)

(k!)43964k
, (13)
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Figure 4: (L) Shigeru Kondo and his π-computer. (R) Alex Yee and his elephant

Figure 5: Jonathan Borwein in his laboratory

which lies in Q(
√

58). This formula was used in Gosper’s 1985 computation of π. Gosper’s
calculation also completed the first proof of (13), since only the coefficient 1103 was unproven
and any other algebraic number would not have yielded over three million correct digits.

Kondo and Yee first computed their result in hexadecimal (base-16) digits. Then, in a
crucial verification step, they checked hex digits near the end against the same string of digits
computed using the BBP formula for π. When this test passed, they converted their entire
result to decimal. The entire computation took 90 days, including 64 hours for the BBP
confirmation and 8 days for base conversion to decimal. Note that the much lower time for the
BBP confirmation, relative to the other two parts, greatly reduced the overall computational
cost. A very detailed description of their work is available at [14].

4 Other BBP-type formulas

One question that immediately arose in the wake of the discovery of the BBP formula for π was
whether there are formulas of this type for π in other number bases — in other words, formulas
where the 16 in the BBP formula is replaced by some other integer, such as 3 or 10. These
computer searches were largely laid to rest in 2004, when one of the present authors (Jonathan
Borwein), together with Will Galway and David Borwein (Jonathan’s father) showed that there
are no degree-1 BBP-type formulas of Machin-type for π, except those whose base is a power
of two [9, Thm. 3.6]. A photo of Jonathan Borwein in his laboratory is shown in Figure 5.

In the years since 1997, computer searches using the PSLQ algorithm, as well as conventional
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analytic investigations, have uncovered BBP-type formulas for numerous other mathematical
constants, including π2, log2 2, π log 2, ζ(3), π3, log3 2, π2 log 2, π4, ζ(5) and Catalan’s constant.
BBP formulas are also known for many arctangents, and for log k, 2 ≤ k ≤ 22, although none
is known for log 23. These formulas and many others, together with references, are given in an
online compendium [1].

One particularly intriguing fact is that whereas only binary formulas exist for π, there are
both binary and ternary (base-3) formulas for π2:

π2 =
9

8

∞∑
k=0

1

64k

(
16

(6k + 1)2
− 24

(6k + 2)2
− 8

(6k + 3)2
− 6

(6k + 4)2
+

1

(6k + 5)2

)
.

(14)

π2 =
2

27

∞∑
k=0

1

729k

(
243

(12k + 1)2
− 405

(12k + 2)2
− 81

(12k + 4)2
− 27

(12k + 5)2

− 72

(12k + 6)2
− 9

(12k + 7)2
− 9

(12k + 8)2
− 5

(12k + 10)2
+

1

(12k + 11)2

)
. (15)

Formula (14) appeared in [3], while formula (15) is due to Broadhurst. There are known
binary BBP formulas for both ζ(3) and π3, but no one has found a ternary formula for either.

4.1 Catalan’s constant

One other mathematical constant of central interest is Eugéne Charles Catalan’s (1814-1894)
constant

G =
∞∑
n=0

(−1)n

(2n+ 1)2
= 0.91596559417722 . . . , (16)

which is arguably the most basic constant whose irrationality and transcendence (though
strongly suspected) remain unproven. Note the close connection to this formula for π2:

π2

8
=
∞∑
n=0

1

(2n+ 1)2
= 1.2337005501362 . . . . (17)

Formulas (16) and (17) can be viewed as the simplest Dirichlet L-series values at 2, hence our
decision to use these constants in our computations.

Catalan’s constant has already been the subject of some large computations. In 2009,
Alexander Yee and Raymond Chan calculated G to 31.026 billion digits [13]. This computation
employed two formulas, including this formula due to Ramanujan:

G =
3

8

∞∑
n=0

1(
2n
n

)
(2n+ 1)2

+
π

8
log(2 +

√
3), (18)

which can be derived from the fact that G = −T (π/4) = −3/2 · T (π/12), where T (θ) :=∫ θ
0

log tanσ dσ.
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Figure 6: Berkeley bus banner with David Bailey’s question about randomness of π

The BBP compendium lists two BBP-type formulas for G. The first was discovered nu-
merically by Bailey, but both it and the second formula were subsequently proven by Kunle
Adegoke, based in part on some results of Broadhurst.

For the present study, we sought a formula for G with as few terms as possible, because
run time for computing with a BBP-type formula increases roughly linearly with the number of
nonzero coefficients. The two formulas in the compendium have 22 and 18 nonzero coefficients.
So we explored the linear space of formulas for G spanned by these two formulas, together with
two known “zero relations” (BBP-type formulas whose sum is zero). This led to the following
formula, which has only 16 nonzero coefficients, and was used in our computations:

G =
1

4096

∞∑
k=0

1
4096k

(
36864

(24k + 2)2
− 30720

(24k + 3)2
− 30720

(24k + 4)2
− 6144

(24k + 6)2
− 1536

(24k + 7)2

+
2304

(24k + 9)2
+

2304
(24k + 10)2

+
768

(24k + 14)2
+

480
(24k + 15)2

+
384

(24k + 11)2
+

1536
(24k + 12)2

+
24

(24k + 19)2
− 120

(24k + 20)2
− 36

(24k + 21)2
+

48
(24k + 22)2

− 6
(24k + 23)2

)
. (19)

5 BBP formulas and normality

One motivation in computing and analyzing digits of π and related constants is to explore
the age-old question of whether and why these digits appear “random.” Numerous computer-
based statistical checks of the digits of π — unlike those of e — so far have failed to disclose
any deviation from reasonable statistical norms. See, for instance, Table 4, which presents
the counts of individual hexadecimal digits among the first trillion hex digits, as obtained by
Yasumasa Kanada. The randomness issue inspired a banner that adorned a shuttle bus in
Berkeley, California for several years — see Figure 6.

Given some positive integer b, a real number α is said to be b-normal if every m-long string of
base-b digits appears in the base-b expansion of α with precisely the expected limiting frequency
1/bm. It follows from basic probability theory that almost all real numbers are b-normal for
any specific base b and even for all bases simultaneously. But proving normality for specific
constants of interest in mathematics has proven remarkably difficult.

Interest in BBP-type formulas was heightened by the 2001 observation, by one of the present
authors (Bailey) and Richard Crandall, that the normality of BBP-type constants such as
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π, π2, log 2 and G can be reduced to a certain hypothesis regarding the behavior of a class of
chaotic iterations [5]. No proof of that general hypothesis was offered in their paper (and any
proof is likely to be quite difficult), but any specific instances of this result would be quite
interesting. For example, if it could be established that the iteration given by w0 = 0, and

wn =

(
2wn−1 +

1

n

)
mod 1 (20)

is equidistributed in [0, 1) (i.e., is a “good” pseudorandom number generator), then, according
to the Bailey-Crandall result, it would follow that log 2 is 2-normal. In a similar vein, if it could
be established that the iteration given by x0 = 0 and

xn =

(
16xn−1 +

120n2 − 89n+ 16

512n4 − 1024n3 + 712n2 − 206n+ 21

)
mod 1 (21)

is equidistributed in [0, 1), then it would follow that π is 2-normal.
Giving further hope to these studies is the recent extension of these methods, also by Bailey

and Crandall, to a rigorous proof of normality for an uncountably infinite class of real numbers.
Given a real number r in [0, 1), let rk denote the k-th binary digit of r. Then the real number

α2,3(r) =
∞∑
k=0

1

3k23k+rk
(22)

is 2-normal. For example, the constant α2,3(0) =
∑

k≥0 1/(3k23k
) = 1.043478260869565217 . . .

is provably 2-normal. A similar result applies if 2 and 3 in this formula are replaced by any
pair of co-prime integers (b, c) greater than one [6, 7, 9].

5.1 A curious hexadecimal conjecture

It is tantalizing that if, using (21), one calculates the hexadecimal digit sequence

yn = b16xnc (23)

(where b·c denotes greatest integer), then the sequence (yn) appears to perfectly (not just ap-
proximately) produce the hexadecimal expansion of π. In explicit computations, we checked
that the first 10,000,000 hexadecimal digits generated by this sequence are identical with
the first 10,000,000 hexadecimal digits of π − 3. This is a fairly difficult computation, as
it requires roughly n2 bit-operations, and is not easily performed on a parallel computer sys-
tem. In our implementation, computing 2, 000, 000 hex digits with (23), using Maple, required
17.3 hours on a laptop. Computing 4,100,000 using Mathematica, with a more refined imple-
mentation, required 46.5 hours. The full confirmation, using a C++ program, took 433,192
seconds (120.3 hours) on a IBM Power 780 (model: 9179-MHB, clock speed: 3.864 GHz).
All these outputs were confirmed against stored hex digits of π in the software section of
http://www.experimentalmath.info.

Conjecture 1 The sequence b16xnc, where (xn) is the sequence of iterates defined in equation
(21), generates precisely the hexadecimal expansion of π − 3.
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Hex Digit Occurrences
0 62499881108
1 62500212206
2 62499924780
3 62500188844
4 62499807368
5 62500007205
6 62499925426
7 62499878794
8 62500216752
9 62500120671
A 62500266095
B 62499955595
C 62500188610
D 62499613666
E 62499875079
F 62499937801

Total 1000000000000

Table 4: Digit counts in the first trillion hexadecimal (base-16) digits of π. Note that deviations
from the average value 62,500,000,000 occur only after the first six digits, as expected.

We can learn more. Let ||x−y|| = min(|x−y|, |1− (x−y)|) denote the “wrapped” distance
between reals x and y in [0, 1). The base-16 expansion of π, which we denote πn, satisfies

||πn − xn|| ≤
∞∑

k=n+1

120k2 − 89k + 16

16k−n(512k4 − 1024k3 + 712k2 − 206k + 21)
≈ 1

64(n+ 1)2
, (24)

so that, upon summing from some N to infinity, we obtain the finite value

∞∑
n=N

||πn − xn|| ≤
1

64(N + 1)
. (25)

Heuristically, let us assume that the πn are independent, uniformly distributed random
variables in (0, 1), and let δn = ||αn−xn||. Note that an error (i.e., an instance where xn lies in
a different subinterval of the unit interval than πn, so that the corresponding hex digits don’t
match) can only occur when πn is within δn of one of the points (0, 1/16, 2/16, · · · , 15/16).
Since xn < πn for all n (where < is interpreted in the wrapped sense when xn is slightly less
than one), this event has probability 16δn. Then the fact that the sum (25) has a finite value
implies, by the first Borel-Cantelli lemma, that there can only be finitely many errors. Further,
the small value of the sum (25), even when N = 1, suggests that it is unlikely that any errors
will be observed. If we set N = 10, 000, 001 in (25), since we know there are no errors in the
first 10,000,000 elements, then we obtain an upper bound of 1.563× 10−9 which suggests it is
truly unlikely that errors will ever occur.

A similar correspondence can be seen between iterates of (20) and the binary digits of log 2.
In particular, let zn = b2wnc, where wn is given in (20). Then since the sum of the error terms
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Figure 7: Andrew Mattingly, Blue Gene/P, and Glenn Wightwick

for log 2, corresponding to (25), is infinite, it follows by the second Borel-Cantelli lemma that
discrepancies between (zn) and the binary digits of log 2 can be expected to appear indefinitely,
but with decreasing frequency. Indeed, in computations that we have done, we have found that
the sequence (zn) disagrees with 10 of the first 20 binary digits of log 2, but in only one position
over the range 5000 to 8000.

6 Computing digits of π2 and Catalan’s constant

In illustration of this theory, we now present the results of computations of high-index binary
digits of π2, ternary digits of π2, and binary digits of Catalan’s constant, based on formulas
(14), (15) and (19), respectively. These calculations were performed on a 4-rack BlueGene/P
system at IBM’s Benchmarking Centre in Rochester, Minnesota, USA. This is a shared facility,
so calculations were conducted over a several month period, where, at any given time, none,
some or all of the system was available. It was programmed remotely from Australia, which
permitted the system to be used off-hours. Sometimes it helps to be in a different time zone!

1. Base-64 digits of π2 beginning at position 10 trillion. The first run, which produced
base-64 digits starting from position 1012− 1, required an average of 253,529 seconds per
thread, and was subdivided into seven partitions of 2048 threads each, so the total cost
was 7 · 2048 · 253529 = 3.6 × 109 CPU-seconds. Each rack of the IBM system features
4096 cores, so the total cost is 10.3 “rack-days.” The second run, which produced base-64
digits starting from position 1012, completed in nearly the same run time (within a few
minutes). The two resulting base-8 digit strings are

75|60114505303236475724500005743262754530363052416350634|573227604

|60114505303236475724500005743262754530363052416350634|220210566

(each pair of base-8 digits corresponds to a base-64 digit). Here the digits in agreement are
delimited by |. Note that 53 consecutive base-8 digits (or, equivalently, 159 consecutive
binary digits) are in perfect agreement.

2. Base-729 digits of π2 beginning at position 10 trillion. In this case, the two runs each
required an average of 795,773 seconds per thread, similarly subdivided as above, so that
the total cost was 6.5× 109 CPU-seconds, or 18.4 “rack-days.” The two resulting base-9
digit strings are
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#iters time/iter time with total o’head flops
constant n′ d (×1015) (microsec) (yr) verify (yr) (%) (×1018)
π2 base-26 5 1013 2.16 1.424 97.43 194.87 230.35 18.2 2.58
π2 base-36 9 1013 3.89 1.424 175.38 350.76 413.16 17.8 4.65
G base-46 16 1013 6.91 1.424 311.79 623.58 735.02 17.9 8.26

Table 5: The scale of our computations. We estimate 4.5 quad-double operations per itera-
tion and, , that each costs 266 single-precision operations. The total cost in single-precision
operations is given in the last column. This total includes overhead which is largely due to a
rounding operation that we implemented using bit-masking.

001|12264485064548583177111135210162856048323453468|10565567635862

|12264485064548583177111135210162856048323453468|04744867134524

(each triplet of base-9 digits corresponds to one base-729 digit). Note here that 47 con-
secutive base-9 digits (94 consecutive base-3 digits) are in perfect agreement.

3. Base-4096 digits of Catalan’s constant beginning at position 10 trillion. These two runs
each required 707,857 seconds per thread, but in this case were subdivided into eight
partitions of 2048 threads each, so that the total cost was 1.2 × 1010 CPU-seconds, or
32.8 “rack-days.” The two resulting base-8 digit strings are

0176|34705053774777051122613371620125257327217324522|6000177545727

|34705053774777051122613371620125257327217324522|5703510516602

(each quadruplet of base-8 digits corresponds to one base-4096 digit). Note that 47
consecutive base-8 digits (141 consecutive binary digits) are in perfect agreement.

These long strings of consecutively agreeing digits, beginning with the target digit, provide
a compelling level of statistical confidence in the results. In the first case, for instance, note
that the probability that 32 pairs of randomly chosen base-8 digits are in perfect agreement
is roughly 1.2 × 10−29. Even if one discards, say, the final six base-8 digits as a 1-in-262,144
statistical safeguard against numerical round-off error, one would still have 24 consecutive base-
8 digits in perfect agreement, with a corresponding probability of 2.1 × 10−22. Now strictly
speaking, one cannot define a valid probability measure on digits of π2, but nonetheless, from
a practical point of view, such analysis provides a very high level of statistical confidence that
the results have been correctly computed.

For this reason, computations of π and the like are a favorite tool for the integrity testing for
computer system hardware and software. If either run of a paired computation of π succumbs
to even a single fault in the course of the computation, then typically the final results will
disagree almost completely. For example, in 1986, a similar pair of computations of π disclosed
some subtle but substantial hardware errors in an early model of the Cray-2 supercomputer.
Indeed, the calculations we have done arguably constitute the most strenuous integrity test ever
performed on the BlueGene/P system. Table 5 gives some sense of the scale of the three record
computations, which used more than 135 “rack-days,” 1378 serial CPU-years and more than
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Digit 0 1 2 3 4 5 6 7
base-2 (141) 0.454 0.546 - - - - - -
base-4 (70) 0.171 0.329 0.229 0.271 - - - -
base-8 (47) 0.085 0.128 0.213 0.128 0.064 0.128 0.043 0.213

Table 6: Base-4096 digits of G beginning at position 10 trillion: digit proportions

Figure 8: A random walk on a million digits of Catalan’s constant

1.549× 1019 floating point operations. This is comparable to the cost of the most sophisticated
animated movies as of the present time (2011).

For the sake of completeness, in Table 5 we also record the one, two and three-bit frequency
counts from our Catalan computation.

7 Future directions

It’s a clue.
A never repeating or ending chain, the total timeless catalogue,

elusive sequences, sum of the universe.
This riddle of nature begs:

Can the totality see no pattern, revealing order as reality’s disguise? 1

It is ironic that in an age when even pillars such as Fermat’s Last Theorem and the Poincairé
conjecture have succumbed to the brilliance of modern mathematics, that one of the most ele-
mentary mathematical hypotheses, namely whether (and why) the digits of π or other constants,
such as log 2, π2 or G (see Figure 8), are “random,” remains unanswered. In particular, prov-
ing that π (or log 2, π2 or G) is b-normal in some integer base b remains frustratingly elusive.
Even much weaker results, for instance the simple assertion that a one appears in the binary
expansion of π (or log 2, π2 or G) with limiting frequency 1/2 (which assertion has been amply

1A self-referent digit-mnemonic for pi from http://www.newscientist.com/blogs/culturelab/2010/03/
happy-pi-day.php.
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affirmed in numerous computations over the years), remain unproven and largely inaccessible
at the present time.

Almost as much ignorance extends to simple algebraic irrationals such as
√

2. In this case
it is now known that the number of ones in the first n binary digits of

√
2 must be at least of

the order of
√
n, with similar results for other algebraic irrationals [2]. But this is a very weak

result, given that this limiting ratio is almost certainly 1/2, not only for
√

2 but more generally
for all algebraic irrationals.

Nor can we prove much about continued fractions for various constants, except for a few
well-known results for special cases such as quadratic irrationals, ratios of Bessel functions, and
certain expressions involving exponential functions.

For these reasons, there is continuing interest in the theory of BBP-type constants, since, as
mentioned, there is an intriguing connection between BBP-type formulas and certain chaotic
iterations that are akin to pseudorandom number generators. If these connections can be
strengthened, then perhaps normality proofs could be obtained for a wide range of polyloga-
rithmic constants, possibly including π, log 2, π2 and G.

As settings change, so do questions. Until the question of efficient single-digit extraction
was asked, our ignorance about such issues was not exposed. The case of the exponential series

ex =
∞∑
n=0

xn

n!
(26)

is illustrative. For present purposes, the convergence rate in (26) is too good.

Conjecture 2 There is no BBP formula for e. Moreover, there is no way to extract individual
digits of e significantly more rapidly than by computing the first n digits.

The same could be conjectured about other numbers including the Euler-Mascheroni con-
stant γ := 0.57721566490153 . . .. In short, until vastly stronger mathematical results are ob-
tained in this area, there will doubtless be continuing interest in computing digits of these
constants. In the present vacuum, that is perhaps all that we can do.
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